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The paper is devoted to an expanded-tapered beam of rectangular cross section subjected
to three-point bending. The analytical model of the beam is formulated with consideration
of a non-linear hypothesis of the cross section deformation. The problem of shear stress
distribution in the beam is analysed based on the above mentioned hypothesis. Moreover,
a numerical FEM model (SolidWorks) is developed. Examplary computations have been
carried out based on the analytical and numerical models.
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1. Introduction

The Euler-Bernoulli beam theory is formulated based on a linear hypothesis. The classical theory
of beams does not take into account the shear effect. Timoshenko (1921) initiated considera-
tion of the shear effect in beam bending. Wang et al. (2000) described in details the shear
effect problems in the case of bending of beams and plates. They presented, in particular, the
Euler-Bernoulli, Timoshenko and Reddy-Bickford beam theories. These cases were illustrated
for various variants of boundary conditions. The expanded-tapered beam problems with consid-
eration of stress, displacements and force relationships were also presented. Zhou and Cheung
(2001) investigated free vibrations of various tapered Timoshenko beams. The eigenfrequency
equation of the beams was formulated with the help of the Rayleigh-Ritz method. The approach
ensured good compliance of the results with those ones presented in the literature. Auciello and
Ercolano (2004) proposed a method of analysing Timoshenko beams with consideration of shear
deformation. The iterative variational Rayleigh-Ritz method was applied to solve the problem,
as an alternative to usual FEM methods. Some numerical examples were developed and the re-
sults were compared to the ones obtained by other researchers. Maalek (2004) considered shear
deflection of tapering cantilever beams of rectangular cross section. The problem was solved
by integration of the Timoshenko beam equation and with the method of virtual work. The
results well agreed with the data calculated with FEM and obtained in experiments. Dado and
Al-Sadder (2005) focused on the problem of large deflections of prismatic and non-prismatic
cantilever beams under various types of load. The angle of beam rotation was described by a
polynomial, the coefficients of which were calculated from minimization of the integral of the
residual error and boundary conditions. The results were compared to data computed with the
MSC/NASTRAN computer package. Slivker (2007) described variational methods in application
to theoretical modelling of the structures. The author presented examples of detailed solutions
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of beams of varying cross section with consideration of the shear effect. Rajasekaran (2008) used
methods of differential quadrature and harmonic differential quadrature to solve the buckling
problem of non-prismatic beams and columns. The governing differential equation was converted
to algebraic ones with the use of differential transformation methods. The results were compared
to those obtained from other numerical and analytical methods. De Rosa and Lippiello (2009)
calculated free vibrations frequencies of tapered Euler-Bernoulli beams subjected to various con-
straints. The authors used the cell discretization method that allows one to determine stiffness
and mass matrices, enabling one to solve the eigenvalue problem. Comparison to other results
demonstrated good quality of the approach. Carrera and Giunta (2010) proposed some theories
intended for analysis of beams. The analyses were carried out for various values of the span-to-
-height ratio. Comparison of the results with the solutions obtained by other authors confirmed
their good agreement. Reddy (2010) used constitutive relations of Eringen and von Karman
nonlinear strains with a view to develop new versions of beam and plate theories, with consid-
eration of the shear effect. This theoretical approach enabled one to reach finite element results
and to define influence of geometric nonlinearity on bending of beams and plates. Attarnejad et
al. (2011) dealt with analysis of arbitrarily tapered Timoshenko beams using Basic Displacement
Functions. This allowed one to derive the exact shape functions that, in turn, enabled one to
interpolate shape functions in the finite element area. Numerical examples confirmed good effi-
ciency of the method. Shahba et al. (2011) analyzed stability and free vibration of functionally
graded tapered Timoshenko beams with the finite element method. The authors formulated a
special finite element using exact shape functions with consideration of exact variations of the
cross sectional profile. The numerical examples verified effectiveness of the method displaying
the effects of the taper ratio and material non-homogeneity on the critical load and natural
frequencies of the beams. Wang (2012) was concerned with deformation of a tapered cantilever
beam. The author formulated explicit stability criteria of pointy tapered columns and presented
numerical calculations related to flat-ended columns. The formulae for large deformation were
derived and numerically integrated. It was shown that the deformation depended on the ta-
per ratio and the cross section profile of the beam. Rajasekaran (2013) used the Differential
Transformation Method and Differential Quadrature Element Method with a view to solve the
problem of free vibration of functionally graded tapered Timoshenko beams. Effectiveness of
the approach was assessed with consideration of the effect of shear deformation, material non-
-homogeneity and the taper angle. The results were compared to those previously obtained by
other authors. Huang et al. (2013) presented a simple higher-order theory intended for analysis
of natural vibration of beams of circular cross section. The new model was close to the Levinson
theory of rectangular beams. The natural frequencies calculated that way were compared with
success to those obtained with the use of the Timoshenko and Euler-Bernoulli beam theories and
with the Finite Element Method. Taha and Nassar (2014) studied axially-loaded tapered beams
supported on an elastic two-parametric foundation. The authors formulated classical equations
of motion without consideration of the shear effect in the beam. The analytical solutions were
compatible with results obtained from other techniques. Auricchio et al. (2015) dealt with a
beam having a cross section varying along the beam axis. A corresponding finite element was
developed. The authors adopted the Hellinger-Reissner functional meeting the equilibrium equa-
tions. The results demonstrated that the beam model and the developed finite element properly
predicted distributions of displacements and stress in tapered and arch-shaped beams. Balduzzi
et al. (2016) investigated simple compatibility, equilibrium and constitutive equations of a non-
prismatic planar beam. A model was developed that accurately depicted the impact of the beam
non-prismatic geometry. A number of analytical and numerical results was compared to those
available in the literature. It was found that the proposed model sufficiently accurately predicted
the real behaviour of non-prismatic beams. Trahair and Ansourian (2016) dealt with tapered web
I-beams and adopted radial instead of parallel normal stress trajectories. As a result, the shear



Three-point bending of an expanded-tapered beam... 663

stress distribution is affected by vertical components of inclined flange forces, equal to zero in
uniform beams, and by normal stress gradients arising in the flanges. In consequence, circumfer-
ential shear stresses had linear components evoked by the axial force and parabolic ones caused
by the moment and shear. Balduzzi et al. (2017) demonstrated several approaches to calculating
cross sections stress distribution within tapered thin-walled I-beams. The method proposed by
the authors was distinguished by the difference between the calculated and actual values below
5% in all considered cases. This allowed one to develop a new generation of effective tools useful
for design of such structural elements. Ghayesh (2018) presented a nonlinear vibration problems
of axially functionally graded shear deformable tapered beams with constant depth and varying
width along length. Magnucki (2019) analysed simply supported sandwich beams and symmet-
rical I-beams. The cases of three-point bending and uniformly distributed load were considered.
Various models of planar cross section deformation were taken into account. The principle of
stationary total potential energy was used to derive differential equations of equilibrium that
enabled calculation of beam deflection with consideration of the shear effect. Magnucki et al.
(2019) provided a comparative analysis of the stress state in bending of a tapered cantilever
beam. The stresses computed analytically, based on literature sources, and numerically (FEM)
were compared with each other showing good agreement of both result series. Bertolini et al.
(2019) derived analytical expressions for six stress components in untwisted, straight, thin-walled
beams with rectangular and circular cross sections, distinguished by constant taper and sub-
jected to forces acting in the cross section. The taper not only modifies stress magnitudes and
distributions but gives rise to stress components, zeroed in prismatic beams. It was shown that
increased taper shortens fatigue life of the beam.

The aim of the work is to develop an analytical model of bending of an expanded-tapered
beam based on the adopted original deformation theory of planar cross section. The beam
deflection was then calculated with consideration of the shear effect and stress distribution
based on this theory. The novelty of the present approach consists in assumption of an individual
theory-hypothesis determining the pattern of beam cross section deformation. The hypothesis
enables one to take into account the shear stress distribution and the shear effect arising while
bending of the beam.

The subject of the paper is a simply supported symmetrically expanded-tapered beam of
rectangular cross section under three-point bending (Fig. 1).

Fig. 1. Scheme of a simply supported expanded-tapered beam under three-point bending

The rectangular cross section is distinguished by constant width b and linear variable depth

h(ξ) = h0h̃(ξ) (1.1)

where: h0 – depth of the beam ends, h̃(ξ) = 1+2ξ tanα – dimensionless depth of the beam, α –
taper angle, ξ = x/h0 – dimensionless coordinate (0 ¬ ξ ¬ λ/2), L –length, λ = L/h0 – relative
length of the beam.
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2. Analytical model of the beam

The nonlinear hypothesis of deformation of planar cross section after bending of the beam is
assumed (Fig. 2).

Fig. 2. Scheme of deformation of planar cross section after beam bending; v(ξ) – deflection,
u1(ξ) – displacement of points located at the upper/lower surfaces

The longitudinal displacement is of the following form

u(ξ, η) = −η
dv

dξ
+ fd(ξ, η)u1(ξ) (2.1)

where fd is the original deformation function

fd(ξ, η) =
[
3− 4(1− 4ξ tanα)

( η
h̃(ξ)

)2] η
h̃(ξ)2

(2.2)

and η = y/h0 – dimensionless coordinate. This function is a generalization of the nonlinear
theory of beams with consideration of the shear effect.
Therefore, the strains take the following form

εx(ξ, η) =
∂u

h0∂ξ
= −
[
η
d2v

dξ2
− fd(ξ, η)

du1
dξ
−
∂fd
∂ξ
u1(ξ)

] 1
h0

γx,y(ξ, η) =
∂u

h0∂η
+
dv

h0dξ
=
∂fd
∂η
u1(ξ)

1

h0

(2.3)

where derivatives of the deformation function are as follows

∂fd
∂ξ
= −12

[
1− 4(1 − 2ξ tanα)

( η
h̃(ξ)

)2] η
h̃(ξ)3

tanα

∂fd
∂η
= 3
[
1− 4(1 − 4ξ tanα)

( η
h̃(ξ)

)2] η
h̃(ξ)2
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The stresses according to Hooke’s law

σx(ξ, η) = Eεx(ξ, η) τxy(ξ, η) =
E

2(1 + ν)
γxy(ξ, η) (2.4)

where: E – Young’s modulus, ν – Poisson’s ratio.
The bending moment

Mb(ξ) = bh
2
0

h̃(ξ)/2∫

−h̃(ξ)/2

σx(ξ, η)η dη (2.5)

Substituting expression (2.4)1 for the normal stress, after integration with respect to depth of
the beam, one obtains the following equation

1

12
h̃(ξ)3

d2v

dξ2
−
1

5
(1 + ξ tanα)h̃(ξ)

du1
dξ
+
2

5
(1 + 3ξ tanα)u1(ξ) tanα = −

F

2Eb
ξ (2.6)

where the bending moment Mb(ξ) = Fξh0/2 is taken into account.
The shear force, with consideration of shear stress (2.4)2, after integration with respect to

depth of the beam takes the following form

T (ξ) = bh0

h̃(ξ)/2∫

−h̃(ξ)/2

τxy(ξ, η) dη =
Eb

1 + ν
u1(ξ) (2.7)

The classical analytical description of the three-point bending of a beam of length L is as follows

T (x) =





F

2
for 0 ¬ x <

L

2

0 for x =
L

2

−
F

2
for

L

2
< x ¬ L

This shear force function is discontinuous for x = L/2, moreover its derivative is equal to zero.
Consequently, according to expression (2.7), the displacement function u1(ξ) is also discontinuous
for x = L/2, and its derivative is zero. Therefore, equation (2.6) becomes incomplete due to
zeroing of the derivate, (du1/dx = 0).
Hence, with a view to ensure continuity of the shear force and displacement functions, the

shear force function for the three-point bending is assumed in the following form

T (ξ) =
1

2
tanh
(λ
2
− ξ
)
F (2.8)

Therefore, based on above expressions (2.7) and (2.8), the function u1(ξ) – displacement (Fig. 2)
takes the following form

u1(ξ) =
1

2
(1 + ν) tanh

(λ
2
− ξ
) F
Eb

(2.9)

Substituting this function into Eq. (2.6) and making simple transformation, one obtains the
equation

d2v

dξ2
= −6

{1 + ν
5

[ 1 + ξ tanα
cosh2(λ/2 − ξ)

h̃(ξ) + 2 tanh
(λ
2
− ξ
)
(1 + 3ξ tanα) tanα

]
+ ξ
} 1
h̃(ξ)3

F

Eb

(2.10)
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Consequently, after integration one obtains

dv

dξ
= −6

{
C1 +

1

5
(1 + ν)[J1(ξ) + 2J2(ξ)]−

1

8

1 + 4ξ tanα

[h̃(ξ) tanα]2

} F
Eb

(2.11)

where J1 and J2 – numerically calculated integrals

J1 =

∫
1 + ξ tanα

cosh2(λ/2 − ξ)

1

h̃(ξ)2
dξ J2 =

∫
tanh
(λ
2
− ξ
)
(1 + 3ξ tanα)

tanα

h̃(ξ)3
dξ

and C1 – integration constant determined from the condition dv/dξ
∣∣
λ/2
= 0

C1 =
1

8

1 + 2λ tanα

[h̃(λ/2) tanα]2
−
1

5
(1 + ν)

(
J1
∣∣∣
λ/2

0
+ 2J2

∣∣∣
λ/2

0

)

Therefore, integrating Eq. (2.11) and taking into account the boundary condition v(0) = 0,
simple transformation enables one to formulate the maximum deflection of the beam

v(Analyt)max = v
(1
2
λ
)
= ṽ(Analyt)max

F

Eb
(2.12)

where the dimensionless maximum deflection is

ṽ(Analyt)max = 6
{ ln h̃(λ/2)
8 tan3 α

−
2 + 3λ tanα

16[h̃(λ/2) tanα]2
λ

−
1 + ν

5

[(
J1
∣∣∣
λ/2

0
+ 2J1

∣∣∣
λ/2

0

)
λ+ J21

∣∣∣
λ/2

0
+ 2J22

∣∣∣
λ/2

0

]} (2.13)

and two numerically calculated integrals are

J21
∣∣∣
λ/2

0
=

λ/2∫

0

∫
1 + ξ tanα

cosh2(λ/2 − ξ)

1

h̃(ξ)2
dξ2

J22
∣∣∣
λ/2

0
=

λ/2∫

0

∫
tanh
(λ
2
− ξ
)
(1 + 3ξ tanα)

tanα

h̃(ξ)3
dξ2

Shear stress (2.4)2 with consideration of expressions (2.3)2 and (2.9) is expressed as follows

τxy(ξ, η) = τ̃xy(ξ, η)
F

bh0
(2.14)

where the dimensionless shear stress is

τ̃xy(ξ, η) =
3

4

[
1− 4(1 − 4ξ tanα)

( η
h̃(ξ)

)2] 1
h̃(ξ)2

tanh
(λ
2
− ξ
)

(2.15)

Expressions (2.13) and (2.15) make a basis for detailed studies of bending of the beams.

3. Numerical FEM model of the beam

Numerical analysis of the expanded-tapered beams is carried out with the SolidWorks software
package. Symmetry of the beam structure allows one to consider the model including a quarter
of the whole beam (Fig. 3). The adopted boundary conditions simulate behaviour of the beam.
The vertical longitudinal middle plane of the beam coincides with the xy-plane of the coor-

dinate system. The neutral axis of the beam is collinear with the x-axis, while the y-axis aims
downward. The beam model is divided into 3D tetrahedral finite elements with 16 Jacobian
points. An example of the mesh is shown in Fig. 4.
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Fig. 3. Model of the expanded-tapered beam adopted for purposes of FEM computation

Fig. 4. A part of an exemplary FEM mesh (in the beam area marked approximately in Fig. 3 with the
dotted circle)

The following boundary conditions corresponding to the case of a simply supported beam
are assumed:

• for x = 0 – a simple support at the beam, i.e. the y displacements at the yz-plane are zero;

• for x = L/2 at the middle of the beam – the x displacements are zero;

• for z = 0, i.e. at the vertical longitudinal middle plane of the beam – the z displacements
are zero.

4. Analytical and FEM-numerical example studies

The exemplary studies of expanded-tapered beams under three-point bending are carried out
for the following data: initial depth h0 = 10mm, width b = 60mm and length L = 4000mm,
dimensionless length λ = 40, taper angle α = 0◦, 1◦, . . . , 5◦, Young’s modulus E = 200GPa,
Poisson’s ratio ν = 0.3.
The dimensionless maximum deflections of the beams are specified in Table 1.
The dimensionless shear stresses in the selected cross sections of the example beams calcu-

lated analytically (2.15) and numerically FEM are specified in Tables 2, 3 and 4.
Taking into account deformation function (2.2) it may be noticed that for ξ = 1/4 tanα, the

function is linear (Fig. 6) and, in consequence, the shear stress is constant (equal to 0.333) in the
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Table 1. Dimensionless maximum deflections of the beams: analytical (2.13) and FEM

α [◦] 0 1 2 3 4 5

ṽ
(Analyt)
max 16030.1 4802.2 2157.4 1181.8 729.0 486.9

ṽ
(FEM)
max 16032.0 4803.0 2157.0 1181.1 728.1 486.0

Table 2. Dimensionless shear stresses: analytical (2.15) and FEM for ζ = 0

α [◦] 1 2 3 4 5

τ̃xy(η = 0) (analyt.) 0.750 0.750 0.750 0.750 0.750

τ̃xy(η = ±h̃(ξ)/2) (analyt.) 0 0 0 0 0

τ̃xy(η = 0) (FEM) 0.723 0.715 0.706 0.698 0.691

τ̃xy(η = ±h̃(ξ)/2) (FEM) 0.010 0.016 0.021 0.027 0.033

Table 3. Dimensionless shear stresses: analytical (2.15) and FEM for ζ = 1/(4 tanα)

α [◦] 1 2 3 4 5

τ̃xy(η = 0) (analyt.) 0.333 0.333 0.333 0.333 0.333

τ̃xy(η = ±h̃(ξ)/2) (analyt.) 0.333 0.333 0.333 0.333 0.333

τ̃xy(η = 0) (FEM) 0.334 0.333 0.334 0.334 0.334

τ̃xy(η = ±h̃(ξ)/2) (FEM) 0.334 0.333 0.334 0.335 0.335

Table 4. Dimensionless shear stresses: analytical (2.15) and FEM for ζ = 15

α [◦] 1 2 3 4 5

τ̃xy(η = 0) (analyt.) 0.323 0.179 0.113 0.0781 0.0571

τ̃xy(η = ±h̃(ξ)/2) (analyt.) 0.338 0.375 0.356 0.328 0.300

τ̃xy(η = 0) (FEM) 0.323 0.180 0.115 0.079 0.052

τ̃xy(η = ±h̃(ξ)/2) (FEM) 0.338 0.375 0.356 0.327 0.299

whole cross section. Moreover, for ξ ¬ 1/4 tanα, the maximum value of the shear stress occurs
at η = 0 (Fig. 5). The opposite situation exists for 1/4 tanα ¬ ξ when the maximum value of
the shear stress occurs for η = ±h̃(ξ)2 (Fig. 7).
Selected forms of deformation function (2.2) and dimensionless shear stress distributions

(2.15) for the taper angle α = 2◦ and the dimensionless coordinates ζ = 0, ξ = 1/(4 tanα),
ζ = 15 are shown in Figs. 5-7.
Comparison of the above results with the values obtained analytically and specified in

Tables 1 to 4 and depicted in Figs. 5 to 8, respectively, indicates very good convergence of
both series of the results. A little worse concurrence of the results is observed in the case of the
shear stresses for ζ = 0. It is due to the fact that the y displacements of the whole wall coinciding
with the yz-plane are zero, that is not exactly equivalent to the simple support adopted in the
analytical approach.
Comparison of the values of maximum deflection of the beam calculated analytically and

FEM-numerically is graphically presented in Fig. 9.

5. Conclusions

Beams of varying cross section dimensions are widely used in many fields of structural mechanics.
Among such structures, extended-tapered beams may be distinguished. In order to precisely
study phenomena arising while their bending, the shear stress should not be ignored.
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Fig. 5. Shape of analytically calculated deformation function (2.2): (a) diagram of the shear stress
(2.15), (b) for ζ = 0

Fig. 6. Shape of analytically calculated deformation function (2.2): (a) diagram of the shear stress
(2.15), (b) for ξ = 1/(4 tanα)

Consideration of the shear effect on the behaviour of the bent expanded-tapered beam re-
quires assumption of a hypothesis of deplanation of its initially planar cross section. Such an
original, non-linear hypothesis is adopted in the present paper. It is formulated with the use of
a polynomial function. The hypothesis enables one to determine location of the singular cross
section which remains planar while bending (Fig. 6a, for ξ = 1/(4 tanα).
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Fig. 7. Shape of analytically calculated deformation function (2.2): (a) diagram of the shear
stress (2.15), (b) for ζ = 15

Fig. 8. Diagrams of the shear stress calculated with FEM: (a) for ζ = 0, (b) for ξ = 1/(4 tanα),
(c) for ζ = 15

The analytical calculation results achieved with the help of the hypothesis, namely the de-
flection and shear stress distribution in several locations of the beam, have been compared to
the ones obtained numerically with the Finite Element Method.

The comparison demonstrated good effectiveness of the approach. Thereby, the proposed
hypothesis of deplanation may be considered as a promising method of bending analysis of
expanded-tapered beams.

In order to ensure continuity of the shear force and displacement, assumed shear force func-
tion (2.8) for exemplary beams of relative length λ = 40 takes the form shown in Fig. 10.
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Fig. 9. Maximum deflection of the beam obtained analytically and numerically

Fig. 10. Diagram of shear force function (2.8) for three-point bending of exemplary beams

This function assumed in the analytical model provides continuity of the longitudinal dis-
placements u1(x) (Fig. 2). Such a function is meaningful for practical application in the case of
a concentrated force acting on the beam.
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